Least-square Support Vector Machine for Financial Crisis Forecast Based on Particle Swarm Optimization

نویسنده

  • Xinli Wang
چکیده

Whether listed companies run soundly or not has direct impact on development of capital market, therefore, how to forecast financial crisis of listed companies accurately has been a widespread topic. Essentially financial crisis of listed companies is mainly about model pattern classification. Considering that Particle Swarm Optimization (PSO) and Support Vector Machine (SVM) have great performance and strength on classification and regression analysis, this paper puts forward the hybrid forecast thought by combination of the two methods above as research focus. Firstly via building performance indicators, the forecast model based on classification is established and related parameters are optimized by PSO. Then empirical financial crisis analysis will be conducted on this method using financial data of listed companies. The simulation results indicate that the forecast model established in this paper combines the strength of artificial intelligence and statistics, and can avoid phenomenon of over fitting and under fitting compared with traditional models. Moreover, with strong generalization ability, the model is accurate and universal, hence having high application value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Forecasting Daily Pedestrian Flows in the Tiananmen Square Based on Historical Data and Weather Conditions

It is important to forecast the pedestrian flows for organizing crowd activities and making risk assessments. In this article, the daily pedestrian flows in the Tiananmen Square are forecasted based on historical data, the distribution of holidays and weather conditions including rain, wind, temperature, relative humidity, and AQI (Air Quality Index). Three different methods have been discussed...

متن کامل

Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-...

متن کامل

An Improved QPSO Algorithm for Parameters Optimization of LS-SVM

Aiming at the parameter optimization of least square support vector machine (LS-SVM), an improved quantum-behaved particle swarm optimization (IQPSO) algorithm for LS-SVM parameter selection was proposed. Based on QPSO, the algorithm optimizes particle initializing positions and improves solving speed and precision by sampling and linearizing methods. IQPSO LSSVM model was test by test function...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014